Cuarto Parcial
Antecedentes históricos de la estadísticas y probabilidad
Estadisticas
La estadistica es la ciencia cuyo objetivo es reunir una informacion cuantitativa en interpretacion de numeros con el fin de realizar una toma de decisiones, la estadistica fue allada por John Graunt en el antiguo ejipto desde la civilizacion an existido formas sencillas de setadistica pues ya se utilizaban representaciones graficas y otros simbolos en pieles, rocas, palos de madera y paredes de cuevas para contar el numero de personas, hacia el año 3000 a.c los babilonios utilizaban pequeñas tablillas de arcilla para recopilar datos sobre la produccion agricola y generos vendidos.Los ejipcios analizaban los datos de poblacion y la renta del pais antes de la construcion de las piramides aproximados al año 3000 a.c. los libros boblicos de numeros y cronicas incluyen trabajos de la estadistica, el primero contiene dos censos de la poblacion de israel y el segundo describe el bienestar material de las diversas tribus jidias. En la poblacion de china existian registros similares con anterioridad al año 2000 a.c. Los griegos realizaban censos cuya informacion se utilizaba hacia el año 594 a.c para la comprobacion de los impuestos. El imperio romano fue el primero gobierno que recopilo cantidades de datos acerca de la poblacion, superficie y la renta de todos los territorios que estaban bajo su control, en la esdad media solo se realizaron censos en europa. D urante el brote de peste que aparecio a finales de la decada 1500 el gobierno ingles comenzo a publicar estadisticas semanales de los decensos, la cuenta de mortalidad, los nacimientos y los fallecimientos por sexo. El campo de la estadistica se refiere al calculo de probalilidades en la rama de interminismo o relatividad y fue conocida en la rama de la fisica.Probabilidad
La historia de la probabilidad comienza en el siglo XVII cuando Pierre Fermat y Blaise Pasca tratan de resolver algunos problemas relacionados con los juegos de azar. Aunque algunos marcan sus inicios cuando Cardano (jugador donde los haya) escribió sobre 1520 El Libro de los Juegos de Azar (aunque no fué publicado hasta más de un siglo después, sobre 1660) no es hasta dicha fecha que comienza a elaborarse una teoría aceptable sobre los juegos.
Christian Huygens conoció la correspondencia entre Blaise Pascal y Pierre Fermat suscitada por el caballero De Méré, se planteó el debate de determinar la probabilidad de ganar una partida, y publicó (en 1657) el primer libro sobre probabilidad: De Ratiociniis in Ludo Aleae, (Calculating in Games of Chance), un tratado sobre juegos de azar.Se aceptaba como intuitivo el concepto de equiprobabilidad, se admitía que la probabilidad de conseguir un acontecimiento fuese igual al cociente entre
Durante el siglo XVIII, debido muy particularmente a la popularidad de los juegos de azar, el cálculo de probabilidades tuvo un notable desarrollo sobre la base de la anterior definición de probabilidad. Destacan en 1713 el teorema de Bernoulli y la distribución binomial, y en 1738 el primer caso particular estudiado por De Moivre , del teorema central del límite. En 1809 Gauss inició el estudio de la teoría de errores y en 1810 Laplace, que había considerado anteriormente el tema, completó el desarrollo de esta teoría. En 1812 Pierre Laplace publicó Théorie analytique des probabilités en el que expone un análisis matemático sobre los juegos de azar.
A mediados del siglo XIX, un fraile agustino austríaco, Gregor Mendel, inició el estudio de la herencia, la genética, con sus interesantes experimentos sobre el cruce de plantas de diferentes características. Su obra, La matemática de la Herencia, fue una de las primeras aplicaciones importantes de la teoría de probabilidad a las ciencias naturales
Medidas de tendencia central para datos no agrupados y agrupados
Medidas de Tendencia Central para datos no agrupados
Existen tres medidas comunes para identificar el centro de un conjunto de datos: la media, mediana y moda. En cada caso, se ubican alrededor del punto en donde se aglomeran los datos.
Media: Medida de tendencia central usualmente llamada promedio, se define como la división de la suma de todos los valores entre el numero de datos.
Mediana: Del conjunto de datos obtenidos es el valor que al organizar los datos en orden ascendente o descenderte a la mitad o centro de los mismos. La posición que ocupa la mediana puede ser determinada mediante la siguiente fórmula:
Mediana =X[(n/2)+1/2]
Ejemplo: Dados los siguientes 8 datos ordenados en orden ascendente: 5,8,8,11,11,11,14,16., encuentra la mediana.
Utilizando la formula para ubicar la posición del dato que representa la mediana indica que:
Mediana =(8/2)+1/2 = 4.5
Por lo que la mediana esta ubicada entre el dato 4 y 5; el valor del dato 4 es “ 11” y del dato 5 es “ 11”, por lo que al sacar el promedio, da que la mediana de la muestra estudiada es 11.
Moda: Es el dato que ocurre con mayor frecuencia en un conjunto de elementos estudiados. Del ejemplo anterior donde los datos recopilados son: 5,8,8,11,11,11,14,16; el dato que ocurre con mayor frecuencia es el valor 1, siendo este valor la moda.
Media ponderada: es una media aritmética, en la cual se considera a cada uno de los valores de acuerdo con su importancia en el grupo.
Mediana Ponderada
En donde:
X = Observación individual
Q= el peso o ponderación asignada a cada observación
Medidas de Tendencia Central para datos agrupados
Cuando se trabaja con datos que han sido agrupados en una distribución de frecuencias, no se sabe con certeza los valores individuales de cada dato. Por lo que se utilizan métodos alternos para aproximar los valores de las medidas descriptivas.
Media para datos agrupados: Al calcular la media para datos agrupados, se supone que las observaciones en cada clase son iguales al punto medio de la clase
Mediana: Primero se encuentra la clase mediana, la cual es la clase cuya frecuencia acumulada es mayor o igual a n/2 y puede determinarse mediante la siguiente fórmula:
La moda es la observación que ocurre con mayor frecuencia, por lo que es necesario identificar la clase modal, esta se localiza encontrando la clase que tenga más frecuencia.
Medidas de Dispersión
Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.
Las medidas de dispersión son:
Rango o recorrido
El rango es la diferencia entre el mayor y el menor de losdatos de una distribución estadística.
Desviación media
La desviación respecto a la media es la diferencia entre cada valor de la variable estadística y la media aritmética.
Di = x - x
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
La desviación media se representa por
Ejemplo
Calcular la desviación media de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Desviación media para datos agrupados
Si los datos vienen agrupados en una tabla de frecuencias, la expresión de la desviación media es:
Ejemplo
Calcular la desviación media de la distribución:
xi | fi | xi · fi | |x - x| | |x - x| · fi | |
[10, 15) | 12.5 | 3 | 37.5 | 9.286 | 27.858 |
---|---|---|---|---|---|
[15, 20) | 17.5 | 5 | 87.5 | 4.286 | 21.43 |
[20, 25) | 22.5 | 7 | 157.5 | 0.714 | 4.998 |
[25, 30) | 27.5 | 4 | 110 | 5.714 | 22.856 |
[30, 35) | 32.5 | 2 | 65 | 10.174 | 21.428 |
21 | 457.5 | 98.57 |
Varianza
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una distribución estadística.
La varianza se representa por .
Varianza para datos agrupados
Para simplificar el cálculo de la varianza vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
Varianza para datos agrupados
Ejercicios de varianza
Calcular la varianza de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Calcular la varianza de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60 | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
Propiedades de la varianza
1 La varianza será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la varianza no varía.
3 Si todos los valores de la variable se multiplican por un número la varianza queda multiplicada por el cuadrado de dicho número.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas varianzas se puede calcular la varianza total.
Si todas las muestras tienen el mismo tamaño:
Si las muestras tienen distinto tamaño:
Observaciones sobre la varianza
1 La varianza, al igual que la media, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la varianza.
3 La varianza no viene expresada en las mismas unidades que los datos, ya que las desviaciones están elevadas al cuadrado.
Desviación típica
La desviación típica es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación típica se representa por σ.
Desviación típica para datos agrupados
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
Desviación típica para datos agrupados
Ejercicios de desviación típica
Calcular la desviación típica de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
Calcular la desviación típica de la distribución de la tabla:
xi | fi | xi · fi | xi2 · fi | |
---|---|---|---|---|
[10, 20) | 15 | 1 | 15 | 225 |
[20, 30) | 25 | 8 | 200 | 5000 |
[30,40) | 35 | 10 | 350 | 12 250 |
[40, 50) | 45 | 9 | 405 | 18 225 |
[50, 60) | 55 | 8 | 440 | 24 200 |
[60,70) | 65 | 4 | 260 | 16 900 |
[70, 80) | 75 | 2 | 150 | 11 250 |
42 | 1 820 | 88 050 |
Propiedades de la desviación típica
1 La desviación típica será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
2 Si a todos los valores de la variable se les suma un número la desviación típica no varía.
3 Si todos los valores de la variable se multiplican por un número la desviación típica queda multiplicada por dichonúmero.
4 Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones típicas se puede calcular la desviación típica total.
Si todas las muestras tienen el mismo tamaño:
Si las muestras tienen distinto tamaño:
Observaciones sobre la desviación típica
1 La desviación típica, al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas.
2 En los casos que no se pueda hallar la media tampoco será posible hallar la desviación típica.
3 Cuanta más pequeña sea la desviación típica mayor será la concentración de datos alrededor de la media.
No hay comentarios.:
Publicar un comentario